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Abstract

This paper disentangles the roles of capital regulation and credit ratings in mit-
igating insolvency risk in the U.S. property insurance market. I first investigate the
mechanism through which capital requirements affect the insurance market. Using
reduced-form evidence and an instrumental variable approach that exploits a 2017 pol-
icy change as a quasi-experiment, I find that a $1 million increase in required capital
leads insurers to hold $3.34 million more in capital and to raise insurance prices by
0.218 percentage points. These results reveal a direct trade-off between financial sta-
bility and consumer affordability. To further explore the underlying mechanisms, I
develop a structural model in which insurers make capital and pricing decisions in a
competitive market with limited liability and exposure to catastrophic risks. Coun-
terfactual analyses show that tightening capital requirements improves solvency but
raises prices. In the absence of capital regulation, the model predicts that the in-
solvency rate would increase by 0.09 percentage points, while insurance prices would

decline by about 5.1%, accompanied by greater risk-taking and market concentration.
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A third counterfactual scenario examines a market without capital regulation but with
high credit rating salience. When consumers place greater emphasis on credit ratings,
the insolvency rate decreases; however, intensified price competition reduces profitabil-
ity and increases market concentration. Overall, the findings underscore that capital
regulation remains crucial for sustaining market stability, as heightened rating salience

alone cannot fully substitute for its stabilizing effects.

In recent years, the frequency and severity of extreme weather events have increased,
leading to substantial natural and economic losses. In 2022 alone, global natural disaster
damages surpassed $270 billion, with the United States accounting for approximately $140
billion of that total. Property insurance plays a vital role in post-disaster recovery by facili-
tating reconstruction efforts. However, catastrophic events are also a major driver of insurer
insolvencies. For example, following Hurricane Andrew in 1992, eleven insurance compa-
nies—ten in Florida and one in Louisiana—became insolvent. Because insurers operate
under limited liability, they can declare bankruptcy to avoid excessive losses. When insol-
vencies occur, State Guaranty Funds intervene to compensate affected policyholders. The
combination of limited liability and government-backed bailouts underscores the importance

of insurer solvency as a central issue in the property insurance market.

Two primary mechanisms safeguard the solvency of property insurers: market-based
discipline and regulatory oversight. Market discipline is administered through credit ratings,
which evaluate the financial strength of an insurer and provide vital signals to consumers
and reinsurers. Regulatory oversight is enforced through capital requirements, which serve
to mitigate moral hazard and risk-seeking behaviors. These regulations also ensure a lig-
uidity cushion to absorb unexpected losses, thereby protecting policyholders. However, the
core activities of U.S. insurers are not considered to pose significant systemic risk (a con-
clusion from Cummins and Weiss (2014)). In an environment with low systemic risk and a
robust market discipline mechanism like credit ratings, the appropriate stringency of capital

regulation in the property insurance market could reduce distortions from costs of capital.



This idea is bolstered by the empirical observation that most property insurers hold capital
levels more than the required amount. This “capital puzzle” raises fundamental questions
about whether regulatory capital requirements or credit ratings primarily constrain insurer

solvency.

This paper, therefore, seeks to disentangle the roles of these two mechanisms by address-
ing the following questions: What are the primary constraints on insolvency in the property
insurance market, and to what extent can heightened credit rating salience substitute for
capital regulation in ensuring solvency while maintaining insurance affordability? Recent
debates on U.S. capital regulation have focused on whether the current static, formula-based
framework should be replaced by a model-based approach that more accurately reflects in-
surers’ risk exposures. Before such a transition can be meaningfully evaluated, however, it is
essential to understand how existing mechanisms—credit ratings and regulatory capital re-
quirements—jointly influence firms’ solvency risk. In particular, we must assess the extent to
which capital regulation constrains insolvency risk given the presence of credit ratings, which
themselves provide market-based discipline. The static, formula-based framework refers to
the risk-based capital (RBC) ratio described in Section 1, while the model-based approach
relies on predictive models of future losses to determine the level of capital consistent with
a target default probability. This paper provides the necessary groundwork for that broader
policy discussion by examining the interaction between credit ratings and capital regulation

in the property insurance market.

In this paper, I examine how capital requirements and credit ratings interact to shape
insolvency risk in the U.S. property insurance market. The paper addresses three central
questions: (1) how capital regulation affects insurer solvency and market outcomes, (2) what
role capital regulation plays when credit ratings serve as an important source of market
discipline, and (3) whether increasing credit rating salience among consumers can effectively

substitute for capital regulation in promoting market stability.



I begin by analyzing the mechanisms through which capital regulation influences the
insurance market using a reduced-form empirical approach. The analysis centers on a key
regulatory trade-off: while tighter capital requirements enhance solvency, they may also
increase prices and reduce insurance affordability. To identify this effect, I exploit an exoge-
nous 2017 policy change as an instrument for required capital, addressing the endogeneity of
regulatory capital levels. Following the 2017 policy change, property insurers were required
to use a 1-in-100-year scenario model to assess catastrophe exposure when calculating re-
quired capital. The results show that a $1 million increase in required capital leads insurers
to raise held capital by $3.34 million, accompanied by a 0.218 percentage point rise in in-
surance prices. The increase in capital on hand appears large because the regulatory capital
threshold is 200% (see Table 1). Moreover, since capital on hand is stochastic and depends
on market valuations, insurers have an incentive to maintain excess capital. These find-
ings highlight the sensitivity of insurers’ balance-sheet decisions and pricing strategies to

regulatory constraints.

Building on this reduced-form evidence, I develop a structural model in which insurers
optimally choose capital and pricing under competition, limited liability, and exposure to
catastrophic losses. On the demand side, I specify a logit model in which consumers’ insur-
ance choices depend on price and credit ratings. On the supply side, insurers jointly deter-
mine capital, pricing, and reinsurance decisions while facing both market discipline and capi-
tal regulation. Insolvency triggers state intervention through the State Guaranty Fund, which
collects post-event assessments from consumers to pay policyholder claims—introducing an

endogenous insolvency cost into the model.

I first construct the moment conditions and estimate the demand system using instru-
mental variables. Since price levels are unobserved, I recover the baseline prices and the
price elasticity parameter from observed price changes during the demand estimation. On

the supply side, I estimate most components directly from data, including the credit rating



function, required capital function, loss-rate and asset-return distributions, and reinsurance-
related parameters. The credit rating and required capital functions are estimated using
a generalized additive model, chosen for its robust out-of-sample predictive performance.
The remaining unobserved element—the random shocks in insurers’ insolvency decisions—is
estimated structurally within the supply system using the model’s first-order conditions and

observed insolvency outcomes.

During the optimization process of the counterfactual analysis, since an insurer’s price
and the opponents’ prices jointly determine the insurance quantity, in each iteration, insurers
simultaneously determine their prices, asset allocations, and reinsurance strategies, given
competitors’ choices. The process converges to a Nash equilibrium when no insurer has
an incentive to deviate from its strategy. In the first counterfactual analysis, I investigate
how tightening the capital regulation threshold affects market outcomes. Consistent with
the reduced-form findings, stricter capital requirements strengthen solvency but raise prices.
This counterfactual analysis explores the mechanism of capital regulation by evaluating its
impact on the trade-off between solvency and affordability. In a second counterfactual,
I isolate the contribution of capital regulation in a market already disciplined by credit
ratings. Eliminating capital requirements increases the insolvency rate by 0.09 percentage
points while lowering insurance prices by about 5.1%. The absence of regulation also induces
greater risk-taking and market concentration. The third counterfactual analysis examines
a market without capital regulation but with high credit rating salience. When consumers
place greater emphasis on credit ratings, the insolvency rate declines by 0.14 percentage
points; however, intensified price competition compresses operating profits and encourages
riskier investment behavior, leading to higher market concentration. Taken together, these
findings underscore the stabilizing role of capital regulation, even in environments where
credit ratings exert substantial market discipline or where consumers are highly attentive to

insurers’ credit ratings.



This paper contributes to the literature on the roles of capital regulation and credit
ratings in the property and casualty insurance industry. The National Association of In-
surance Commissioners (NAIC) defines the Risk-Based Capital (RBC) ratio—the primary
component of insurers’ capital regulation—as a tool that grants regulators the legal author-
ity to intervene in financially distressed insurance companies. Risk-Based Capital (RBC)
ratio is a ratio between actual capital and required capital. However, the RBC ratio alone
is not intended to serve as a stand-alone measure of financial solvency. Grace et al. (1998)
find that RBC ratios are less effective than the Financial Analysis Solvency Tools (FAST) in
predicting insurer insolvency. The Financial Analysis Solvency Tools (FAST) is a series of
analytical ratios and scoring used by U.S. state insurance regulators to assess the financial
condition and solvency of property and casualty insurers. Nevertheless, the combination of
RBC ratios and FAST indicators provides stronger predictive power than FAST alone. Sim-
ilarly, De Haan and Kakes (2010) show that insurers’ actual capital holdings are driven more
by their underlying risk characteristics than by regulatory solvency requirements, leading
most insurers to hold substantially more capital than required. In parallel, other studies
examine the role of credit ratings. Basten and Kartasheva (2024) evaluate how regulators
and credit rating agencies monitor and discipline the insurance industry’s exposure to nat-
ural catastrophe (NatCat) risks. They find that many insurers accept rating downgrades
and subsequently increase their risk-taking. Eling and Holzmiller (2008) compare capital
regulation frameworks for property and casualty insurers across countries and show that
New Zealand uniquely integrates rating agencies into its self-supervisory process. Building
on this literature, my paper focuses on the interaction between capital regulation and credit
ratings, aiming to disentangle the distinct roles of capital regulation play in maintaining

solvency within the property insurance market.

Secondly, this paper contributes to the literature on optimal capital requirements in the
insurance market. Goussebaile and Louaas (2022) conducts a theoretical welfare analysis of

solvency regulation in the context of catastrophe insurance. Boonen and Jiang (2023) exam-



ines the Pareto-optimal reinsurance problem under solvency constraints imposed on reinsur-
ers. The theoretical model in Charpentier and Le Maux (2014) highlights that government-
provided insurance becomes more attractive when insurer insolvency risk is taken into ac-
count during insurance purchase decisions. Cummins et al. (1993) provides a qualitative
discussion of optimal capital requirements. In contrast to these studies, this paper develops
a simple theoretical framework and employs structural estimation to quantitatively assess
the optimal threshold for capital regulation. By combining theory with empirical analysis,
this paper provides a well-supported assessment of optimal capital requirements, grounded

in both structural modeling and observed data.

This paper contributes to the extensive literature on the effects of capital requirements
in insurance markets. Prior research has established a clear link between capital adequacy
and market outcomes. For instance, Eastman and Kim (2023) find that stringent capital
requirements lead to increased insurance premiums. Similarly, Gron (1994) shows that an
unexpected decrease in financial capacity results in higher prices and profitability. The lit-
erature has explored these dynamics across various regulatory landscapes. Barbu (2023)
examines the transition from the heterogeneous Solvency I regime to the harmonized Sol-
vency II framework in the European Union, analyzing the impact of differing regulations on
product markets and financial stability. In the context of the U.S. life insurance industry,
Tang (2022) investigates the competitive dynamics among state jurisdictions. The study
finds that while states may lower capital requirements to attract life insurers, this can lead
to increased default risks and lower prices, with the associated costs borne by consumers
in other states. Furthermore, research has delved into how capital regulations influence the
specific investment and operational decisions of insurance companies. Becker et al. (2022)
analyze a reform that removed capital requirements for mortgage-backed securities, finding
that insurers were subsequently more likely to retain these assets after they were down-
graded. Additionally, Niehaus (2018) find that capital flows within insurance groups are

responsive to regulatory capital levels, with insurers holding lower risk-based capital receiv-



ing greater internal capital contributions. While the aforementioned studies provide crucial
empirical insights, this paper builds upon this literature by combining a theoretical model
with structural estimation. This approach allows for a direct and quantitative examination
of the fundamental trade-off between insurer solvency and the affordability of insurance for

consumers.

Finally, this paper contributes to the literature on capital requirements under lim-
ited liability. The most closely related studies come from the banking literature. Corbae
and D’Erasmo (2021) analyze the impact of regulatory policies on bank risk-taking and
market structure, developing and estimating a rigorous theoretical model of bank capital
requirements. Malherbe (2020) shows that the capital requirement that restores investment
efficiency varies over time—being tighter during booms and looser during recessions. Davy-
diuk (2017) proposes an optimal dynamic capital requirement that balances efficient lending
with liquidity provision, finding that the optimal policy depends on economic growth, credit
supply, and asset prices. Building on insights from the banking literature, particularly Cor-
bae and D’Erasmo (2021) and Malherbe (2020), this paper develops a model of capital

requirements for insurers operating under limited liability.

In this paper, I begin by reviewing the institutional background in Section 1. I then use
a policy change to examine the trade-off introduced by capital regulation between solvency
and affordability in Section 3. I find that while capital regulation reduces insolvency in
the insurance market, it simultaneously increases the price of insurance. In Section 4, I
develop a simple supply and demand model of the insurance market to analyze firms’ choices
regarding pricing, asset holdings, and reinsurance under limited liability. Section 5 presents
the estimation of both the demand and supply sides of this structural model. Based on
these estimates, I conduct counterfactual analyses in Section 6. The results indicate that
while credit ratings are influential, the absence of capital regulation would result in higher

insolvency rates and increased market concentration. Even in markets where consumers



are highly sensitive to insurers’ credit ratings, capital regulation remains indispensable for

maintaining market stability. Finally, I conclude and offer a discussion of the implications.

1 Institutional Background

This section provides institutional background on capital regulation, credit ratings, reinsur-
ance, and state guaranty associations, offering context that will aid readers in understanding

the empirical analysis and theoretical models presented in the subsequent sections.

1.1 Capital Regulation

Regulation of the insurance industry in the United States is conducted at the state level.
To promote uniformity and establish best practices, state insurance regulators collaborate

through the National Association of Insurance Commissioners (NAIC).

A key tool for monitoring insurer solvency, developed by the NAIC, is the Risk-Based
Capital (RBC) framework. Insurers are required to maintain capital levels commensurate
with their specific risk profiles. Solvency is primarily assessed using the RBC ratio, which
compares an insurer’s total adjusted capital to its required Risk-Based Capital. The Risk-

Based Capital ratio is calculated with the following formula!:

Total Adjusted Capital

B 10 =
RBC Ratio Authorized Control Level Risk-based Capital

Total adjusted capital refers to the amount of capital a property and casualty insurer holds

after all required adjustments. It is expressed as:

Total adjusted capital = Surplus as regards policyholders + Adjustments

Authorized Control Level Risk-based Capital (ACL RBC) is the regulatory capital require-

'For more details, please read https://content.naic.org/insurance-topics/risk-based-capital
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ment and is calculated using the following equation.

Authorized Control Level Risk-based Capital = 0.5 x Total Risk-based Capital

Total Risk-Based Capital (RBC) is a standardized minimum capital requirement for insurers,
determined by the inherent risks in their assets and operations. The Total Risk-Based
Capital (RBC), developed by the National Association of Insurance Commissioners (NAIC),
is stochastic and depends on various risk categories, including asset risk, underwriting risk,
and business or credit risk, to establish the required capital level. This framework establishes
several action levels based on the ratio of the company’s Total Adjusted Capital (TAC) to
its calculated Authorized Control Level (ACL) RBC. Each level triggers specific regulatory

responses:

Table 1: Risk-Based Capital (RBC) Action Levels and Corresponding Regulatory Actions

RBC Ratio Regulatory Action

150% to 200% Company Action Level: An insurer falling into this range must
submit a comprehensive financial plan to the insurance commissioner
detailing how it will improve its RBC ratio.

100% to 150% Regulatory Action Level: At this level, a regulator is required to
perform an examination of the insurer and issue a corrective action
order specifying necessary improvements.

70% to 100%  Authorized Control Level: If an insurer’s ratio falls within this
range, the state commissioner is authorized, but not required, to take
control of the company, which can include rehabilitation or liquidation.

Below 70% Mandatory Control Level: When the ratio is below this threshold,
the commissioner is obligated to seize the insurer to protect
policyholders.

Notes: This table summarizes RBC action levels and regulatory actions.

1.2 Credit Rating

Credit rating agencies evaluate an insurer’s creditworthiness primarily from the perspec-

tive of debt investors and counterparties. Their objective is to provide an independent,
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market-informed assessment of the insurer’s financial strength and ability to meet future
obligations. These evaluations are generally conservative, as they assess natural catastro-
phe risks separately and earlier than capital regulations, taking into account both current
financial conditions and potential future exposures. Similar to capital regulation, credit rat-
ing agencies assess capital adequacy by considering the insurer’s exposure to risks associated
with underwriting net premiums, asset holdings, subsidiaries, and loss reserves. Major credit
rating agencies active in the insurance market include A.M. Best, S&P Global, Moody’s, and

Fitch.?

In my theoretical model, credit rating will affect consumers’ choice of insurance. My
estimation results suggest that consumers are more willing to choose an insurance company

with higher credit rating.

1.3 Reinsurance

To diversify their underwriting risks and lower the capital requirements they must maintain,
insurance companies obtain reinsurance from reinsurance firms. In real world, credit rating
may affect price of reinsurance. However, because of data limitation, I use a price index
which is uniform across insurers to measure the price of reinsurance. This data limitation
constrains the model, as it restricts the credit rating channel to influence equilibrium only
through its effects on demand. Consequently, insurers in the model have weaker incentives

to improve their credit ratings.

1.4 State Guaranty Association

In the U.S., a state-based system of insurance guaranty associations protects policyholders

and claimants if an insurance company becomes insolvent. These nonprofit organizations,

2For more details, please read Best’s Credit Rating Methodology, Insurer Risk-Based Capital Adequacy-
Methodology an Assumptions by S&P Global, Property and Casualty Insurers Methodology by Moody’s, and
Prism by Fitch.
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mandated by state law, are composed of all insurance companies licensed to do business in a
particular state. When an insurer is deemed insolvent, the state guaranty association steps
in to continue coverage and pay outstanding claims up to statutory limits. Funding for these
payments is primarily sourced from the remaining assets of the failed insurer and through
“post-insolvency assessments” levied on the member insurance companies. The amount each
solvent insurer is assessed is typically based on its share of premiums written within the
state. In many states, these assessed insurers are permitted to recover a portion of these
costs over time through offsets on their assessments from consumers. For example, after
the insolvency of Florida-based insurer St. Johns Insurance Company in 2022, the Florida
Insurance Guaranty Association (FIGA) stepped in to pay out covered claims to affected

homeowners.

1.5 Development of Capital Requirement in Property Insurance

Market

I use a 2017 policy change to evaluate how capital regulation trades off solvency and af-
fordability. Prior to 2017, the risk exposures Rs4 and Rc,; were grouped under the same
category—“underwriting net written premiums risk.” R,, represents risk exposure when mea-
suring required capital. However, starting with the 2017 reporting year, insurers with sig-
nificant exposure to hurricane and earthquake risk have been required to report Rs4 as
“underwriting net written premiums risk net of catastrophic risks” and R¢,; as “catastrophe
risk” separately. While the RBC ratio is generally calculated using static formulas, the Reoqy
component is uniquely assessed using a model-based approach. Specifically, catastrophe
models are used to estimate the predicted exposure to catastrophic risk. These models em-
ploy scenario-based analysis, typically assuming a 1-in-100 year event, which reduces reliance
on historical smoothing and increases required capital to better reflect potential future losses.
Wildfire risks continue to be included for disclosure purposes and are still not in “catastro-

phe risk” when calculating required capital. For the development of capital regulation before
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2017, please refer to Appendix 8.3.

Credit rating agencies began incorporating catastrophe risk into their capital adequacy
models well before regulatory authorities did. For instance, A.M. Best introduced a catas-

trophe adjustment to the numerator of its capital ratio prior to 2003.

2 Data

The empirical analysis in this paper draws on administrative data from the National Associa-
tion of Insurance Commissioners (NAIC), the policy-setting organization for state insurance
regulators in the United States. The NAIC data are at the individual company level. State-
level data on natural disasters are obtained from the Spatial Hazard Events and Losses
Database (SHELDUS), while information on rate changes is sourced from the System for
Electronic Rates & Forms Filing (SERFF). To measure reinsurance price, I use the Guy Car-
penter Global Property Rate on Line Index, which is common to all insurers and varies only
over time. Except for natural disasters, insurers’ price changes, and the reinsurance price, all
other variables are constructed from NAIC statutory filings. The analysis focuses on product
lines that the NAIC identifies as exposed to natural disasters: fire, allied lines (including
water damage), homeowners multiple perils, commercial multiple perils (non-liability por-
tion), earthquake, and farm owners multiple perils. Government-supported or provided crop
insurance (multiple peril crops, private crops) is excluded from the sample. A company’s
market share within a given state is computed as the ratio of its direct written premiums to

the total direct written premiums in that state for the relevant business lines.

I want to study how capital regulation affects solvency and price. Since the required
capital can be endogenous and cause issues for identification, I use instrumental variable
regressions. The instrumental variable used in this study is a regulatory change implemented
in 2017, which requires insurers with significant exposure to hurricanes and earthquakes to

calculate catastrophic risks separately from other underwriting risks when determining their
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Total Risk-Based Capital. The regulation also mandates the use of scenario-based modeling
to estimate future losses. Switching from historical loss data to scenario-based modeling
reduces historical smoothing and increases insurers’ required capital. I define the treated
group as insurers that had exposure to hurricanes and earthquakes prior to 2017. Table
10 lists the regions included in the treated group. Certain states are exempt from this
catastrophic risk regulation. Firms are assigned to the treated group if they underwrote
policies in the lines of earthquake, homeowners, allied lines, farm owners, or commercial
property (non-liability) in catastrophe-prone areas. In contrast, firms with no exposure to
these business lines or whose underwriting activities were confined to states not listed in

Table 10 are classified as the control group.

The primary sample spans the years 2014 to 2023 and is restricted to property insurers.
I define property insurers as firms that wrote insurance in the lines of fire, allied lines,
homeowners, earthquake, farm owners, or commercial property (non-liability). Table 11
presents summary statistics. Columns (1) to (3) report the mean, standard deviation, and
median of the full sample, respectively. Columns (4) to (7) show the means of the treated

and control groups before and after the 2017 regulation.

‘Total Adjusted Capital” refers to the total surplus held by an insurer, while ‘Direct
Written Premiums’ represent the total premiums received—commonly used as a proxy for
firm size in the insurance industry. The treated group consists of firms that underwrote
property insurance related to natural disasters—such as homeowners, commercial property,
fire, allied lines, farm owners, and earthquake insurance—prior to 2017. The control group
comprises firms without such exposure before 2017. The regulatory change took effect in
2017. The variable ‘treatment’ in Table 11 is a binary indicator denoting whether a firm

belongs to the treated or control group.

Firms that entered receivership before 2017 are excluded from the sample, as they do

not fall into either group. The RBC ratio is defined as the ratio of Total Adjusted Capital
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to Authorized Control Level Risk-Based Capital, the latter being the minimum regulatory
capital required. The surplus represents the capital buffer above the insolvency threshold.
All financial variables, except for price change, treatment, and the RBC ratio, are reported
in millions of dollars. Price change and the RBC ratio are expressed in percentages. All

variables are winsorized at the 95% level.

According to the summary statistics in Table 11, the treated group experienced a sub-
stantial increase in regulatory risk-based capital and surplus following the reform, indicating
stricter capital requirements and improved solvency post-regulation. Additionally, treated
firms tend to be larger in size compared to those in the control group. To address this
discrepancy, the empirical analysis in Section 3 includes firm fixed effects and controls for

firm size.

3 Capital Regulation Trades off Solvency and Afford-
ability

In this paper, I study the mechanism through which capital regulation affects insurers’ sol-
vency and the insurance market. This section provides reduced-form evidence to illustrate
the empirical relationship between capital regulation, solvency, and affordability. The subse-
quent sections develop a simple theoretical model in which insurers choose capital, pricing,
and reinsurance under limited liability. I then use this model to conduct counterfactual
analyses. In the first counterfactual exercise, I tighten capital regulation to evaluate the
trade-off between solvency and affordability within the theoretical framework. Empirically,
this section examines the trade-off using the 2017 policy reform as an instrumental variable.
As detailed in Section 1, the 2017 reform required insurers with substantial exposure to hur-
ricane and earthquake risks to separately report catastrophe and other underwriting risks
in their regulatory risk-based capital calculations. A key change introduced by the reform

was the shift from historical loss estimation to scenario-based modeling, which increased
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capital requirements for affected insurers. The identifying variation arises from differences

in insurers’ exposure to catastrophic events, particularly hurricanes and earthquakes.

To identify the causal effects of this reform, I employ a difference-in-differences (DID)
strategy combined with an instrumental variable (IV) approach. The first stage of the IV

regression, which utilizes the DID framework, is specified in the following equation.

yjt = Po + Pitreated; x reform; + ¢; + ¢ + ¢y (1)

J indexes insurers, and y;; denotes the dependent variable, which is the regulatory
risk-based capital. Treatedj is a dummy variable equal to 1 if insurer j wrote at least one
policy with exposure to hurricanes or earthquakes in disaster-prone areas (as shown in Figure
1) before 2017, and 0 otherwise. The sample is restricted to property insurers that wrote
property insurance during the sample period. Property insurance includes the following
product lines: fire, allied lines, earthquake, farmowners, homeowners, and commercial multi-

peril. (j represents insurer fixed effects, and (; represents time fixed effects.

Figure 1: Catastrophe-prone Areas

US States Colored by Treatment

I:l Control

H Earthquake

Hurricane

Notes: The light blue denotes states exposed to earthquake risks. The navy blue areas denote states exposed to hurricane risks.

The purple areas denote states exposed to both earthquake and hurricane risks.

16



The following equation shows the IV regression.

Yit = o+ P1RBCj 4 ( + G + €t (2)

The endogenous variable is RBC;, representing the regulatory risk-based capital. The
outcome variable, y;;, includes both the price change and the surplus (i.e., actual capital
held). The surplus serves as a proxy for the insurer’s distance to insolvency, as greater
capital holdings reduce the likelihood of insolvency. The instrumental variable is defined as

the interaction term treated; x reformy.

Table 2 displays the results for the first stage and reduced form of our analysis. The
variable of interest, treated xreform, serves as the instrumental variable for the endogenous
risk-based capital, as specified in Table 3. The first-stage results, presented in Column (1)
of Table 2, show that the policy change led to a $3.691 million increase in regulatory risk-
based capital. In the reduced form, the reform is associated with a $12.343 million increase in
surplus, which measures the distance to insolvency. Concurrently, the price change increased
by 0.474 percentage points, suggesting that property insurance became more expensive post-
reform. The dynamics illustrated in Figure 2 are consistent with the scale of these regression

results.
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Table 2: First Stage and Reduced Form

Dependent variable:

required capital surplus price change

(1) (2) (3)

treated x reform 3.691*** 12.343** 0.474**
(0.569) (2.591) (0.100)
[31.668] [230.301] [3.078]
Observations 16,655 16,655 16,655
R? 0.0453 0.0501 0.0417
Note:

*p<0.1; *p<0.05; **p<0.01
(standard error), [mean of dependent variable of treated before treatment]
Notes: This table shows regression results of the first stage of instrumental variable regressions. The predictor treated x reform

is a difference-in-difference type instrumental variable. Variable required capital will be the endogenous variable in the IV

regression. Except for price change, the unit of other variables is a million dollar. The unit of price change is percent.

Figure 2: Event study plots of reduced-form specification
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of other variables is a million dollar. The unit of price change is percent.
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Table 3 reports the main results of the IV regressions. The instrumental variable is
the interaction term treated x reform. The outcome variables are the surplus and the price
change. The results indicate that a $1 million increase in capital requirements leads to a $3.34
million increase in surplus, implying that insurers become less likely to face insolvency. As
shown in Table 11, the RBC ratio (defined as total adjusted capital divided by the authorized
control level risk-based capital) generally exceeds 2. Therefore, when the authorized control
level risk-based capital rises by $1 million, the corresponding increase in surplus exceeds $1
million. Conversely, column (2) of Table 3 shows that a $1 million increase in risk-based
capital raises prices by 0.128 percentage points. Taken together, the results in Table 3
highlight a trade-off between insurer solvency and policy affordability in response to higher
capital requirements.

Table 3: IV Regression

Dependent variable:

surplus price change
(1) (2)
required capital 3.344** 0.128***
(0.549) (0.033)
Observations 16,655 16,655
R? 0.400 0.0417
Note: *p<0.1; *p<0.05; **p<0.01

Notes: This table shows regression results of instrumental variable regressions. The instrumental variable is treated x reform.
The variable of interest is Risk-based capital. Except for price change, the unit of other variables is a million dollar. The unit

of price change is percent.

Since insurers sometimes hold more capital than the total Risk-Based Capital (RBC)
requirement, I conduct a robustness check using a subsample of insurers that are more
tightly constrained by the regulation. Specifically, these are insurers whose average RBC
ratios before the treatment are within one or two standard deviations of the capital re-
quirement threshold. The results from these more binding samples are broadly consistent

with those obtained from the full sample. Table 12 presents the first-stage regression results
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for the binding subsamples. Columns (1) to (3) report results for insurers whose average
pre-treatment RBC ratios fall within one standard deviation of the regulatory threshold.
Columns (4) to (6) show results for those within two standard deviations. The magnitudes
of the coefficients are consistent with those from the full sample. However, for the subsam-
ple within one standard deviation, the reduced-form coefficients are somewhat smaller than
those in the full sample. This may be because insurers with lower RBC ratios tend to be
smaller firms with less exposure to risky underwriting. Consequently, the increase in their
required capital is smaller relative to larger insurers. Moreover, smaller insurers may have
fewer resources to raise additional capital. Table 13 shows the IV regression results for the
binding subsamples. The magnitude of the coefficients is similar to those obtained from the

full sample, reinforcing the robustness of the main findings.

Although some insurers may hold capital in excess of regulatory requirements, the
stricter capital regulation still affects non-binding insurers. This is because the policy in-
creases the probability of falling below the required threshold, thereby incentivizing insurers
to hold additional capital as a buffer. The regulatory reform requires insurers to separately
calculate required capital for hurricane and earthquake exposures, and to estimate future
losses using scenario-based modeling rather than relying solely on historical losses. As a
result, the regulation becomes more binding during periods of increased natural catastrophe
activity. Since the policy change coincides with a period of heightened natural disasters, I
am unable to fully disentangle the effects of the new capital regulation from those of the
catastrophes themselves. However, this limitation is reasonable, as the policy is specifically

designed to be most effective when natural catastrophes are more frequent.

4 Model

This section develops a simple theoretical model to illustrate the decisions of property insur-

ers regarding capital, credit rating, pricing, and insolvency. The model incorporates limited
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liability, capital regulation, and the risk of catastrophe shocks.

4.1 Environment

This is a static model with two markets. The two markets are (1) states that are exposed
to hurricane or earthquake risks, and (2) states that have less exposure to hurricane and
earthquake. I use m to denote a market. Within each market, risk-averse households,
indexed by i, demand property insurance. Property insurers, indexed by j, are risk-neutral

and compete by differentiating their products.

Two primary mechanisms monitor and promote insurer solvency. First, the Department
of Insurance in each state regularly evaluates the capital adequacy of property insurers.
Second, credit rating agencies provide independent assessments of insurers’ financial strength

by assigning them credit ratings.

In the event of an insurer’s failure, a state-level Guaranty Association, funded by
assessments on the surviving insurers in that market, compensates the policyholders of the

failed firm. Participation in this association is mandated by state law for all solvent insurers.

The model incorporates two sources of uncertainty: the realization of losses, L;,,, and
the return on risky assets, 7o. Loss rate Lj,, € [0,00] realizes after solving optimization
problems. Loss rates Lj,, correlate within the same market. I assume the risky asset return
ro is independent from the loss rate Lj,,. Risky asset return ry can be negative, and has

higher mean and variance than the safe asset return ry.

The following paragraph describes the timeline of the setup.
Timing:
Stage 1: Insurers set price and capital based on regulations.
Stage 2: Regulators assess capital adequacy. Rating agencies assign credit rating.
Stage 3: Consumers decide what insurance products to purchase.

Stage 4: Shocks realize. Some insurers may choose to go bankrupt. If insurers fail, State
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Guaranty Funds charge taxes and bail out consumers.

4.2 Demand

The demand model is a simple logit model. The formula below shows the demand model.

Uijm = Q1Pjm + QR + im + Eijm (3)

This formula indicates that consumer i’s utility from choosing insurance j in market m
depends on the insurance price pj,,, the insurer’s credit rating R;, and unobserved product
characteristics &j,,. Consumers care about credit ratings because they are not fully bailed
out if the insurer becomes insolvent. The term ¢;j,, represents idiosyncratic demand shocks,

which are assumed to follow an i.i.d. Type I extreme value distribution.

4.3 Supply

Insurers know distribution of losses. However, the randomness of the model (risky asset
return ro and loss rates Lj,,) realizes after agents made decisions. Insurers set prices and

capital to maximize equity values. We can write

P E(IL; + Ay + Ag;) (4)
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s.t.

I, = max{[Z(pjm — Ljm — BExp;)q(Ppm, R) — p"Q}° — FCj + 11 A1 + 1249

m

—  Toa(exp(~p"*Q}°R) + exp(~(108(1 + exp(Y (LB R)) — D)E)]

— (Aqj + Agj) — V;»i} (Profits with limited liability)
Ay
R; =g(¢(p1,R), 4(P2, R), 1, A1 + As)) (Credit rating)
Avj + Ag;j
2<= A1y + Az (Capital requirement)
K(q(plv R); Q(p2ﬂ R)7 A2j)
Q;e :h(Q(p17 R)a Q(pZa R)) (Reinsurance)

Insurers choose price pjm, risk-free asset Ay, risky asset Agj, and reinsurance Q¢ to maxi-
mize firm values. p,, is the price vector including p;,, and opponents’ prices p_;,,. Similarly,
R is the credit rating vector including R; and opponents’ credit ratings R_;. Since this is a
static model, the firm value is equal to the sum of profit II; and assets in hand. Insurers can
choose to hold risk-free assets A;; and risky assets Ay;. The profit is defined with limited
liability. This means when the realized profit is lower than the loss of capital, the insurer
can choose to lose the capital. V;l is a random shock to smooth the insolvency decision. The
higher the yf, the less likely that the insurer will choose to be insolvent. The profit without

limited liability is the following expression.

Z(ij = Ljm — Exp;)q(Pm, R) —p"°Q}° — FCj + 11 A1 +raAy;

m

— 2 Toa(exp(—p Q5" K) + exp(~(108(1 + exp(Y(Lin(Pms R)) ~ d)IF))

m

The profit without limited liability is calculated as total revenue minus claim amounts,
operating expenses, payments to reinsurers, and fixed costs, while adding back investment
income and recoveries from reinsurance. The following extended expression represents the

payment received from reinsurance.

~ 1 10g(exp(~1 QK) + exp(~(0g(1 + xp(3_ (Lim(Brs R)) — )))E)

m
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This expression is a smooth function of min{p"Q}°, max{0, L;nq(Pm, R) — d}}, a combi-
nation of softmin and softmax functions. k& is a smoothness parameter of the function. d is

deductible of reinsurance.

Credit rating is equal to a g(-) function which depends on quantity of written premium

in risky region ¢(p;, R), quantity of written premium in less risky region ¢(p,, R), quantity

of reinsurance ()¢, share of risky assets Al’?;g,, and total assets A;; + Ay;. This definition
J J
of credit rating is a simplified version of how credit rating agency evaluate credit rating in

reality.

Capital requirements mandate that the total capital on hand must be at least twice
the authorized control level of Risk-Based Capital (RBC). Let K(-) denote the authorized
control level RBC. The function K (-) depends on the quantity of written premium in the
risky region, ¢(p;,R), the quantity of written premium in the less risky region, ¢(psy, R),
quantity of reinsurance, 3¢, and risky assets, Ay;. This specification of the authorized
control level RBC aligns with U.S. regulatory practice, with adjustments made to fit the
model.

To compute the optimal choices of prices, assets, and reinsurance, I define a domain in

which insurers remain solvent and transform the objective function into the following form.

max D> ((Pjm — Ljm — Exp;)q(Pm; R)) — p"°Q5°
{Pym, A1y, 425, Q5% Ry} ///D(ijw‘hj7A2J’Q}‘6,Rj) Z " " ! . !

m

— FC; 4+ min{p"Q}*,maz{0,» (Limq(Pem>R)) — d;}} + 11 A1j + 125 Agj| fAV

m

_ /// (Alj + AQJ' + I/Jd)fdv + Alj + Agj
Q/D(pjm,A1;,A25,Q%° Ry)
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s.t.

Ay . .
R; =g(¢(p1,R),q(p2; R), ﬁ, Ayj + Ayj) (Credit rating)
17 + 27
2<— Ai + Az (Capital requirement)
K(q(p1,R), q(p2; R), Az;)

Q¢ =h(q(p1,R),q(p2, R)) (Reinsurance)

The blue expression is the profit when the insurer is solvent. The purple expression rep-
resents the lost capital when it becomes insolvent. I plug in the definition of credit rat-
ing and use implicit function theorem to find first-order conditions. Since sometimes the
capital requirement may not be binding, I use Karush—Kuhn—Tucker conditions to find so-
lutions to the optimization problem. For detailed derivation of first-order conditions and

Karush—-Kuhn—Tucker conditions, please refer to Appendix 8.4.

The domain D(pjm, A, Azj, Q) where insurers are solvent is

> 0y — Ljm — Bap;)q(Pum, R) — p™°Q}° — FC;j + raAgj + 1Ay

m

— 2 Toa(exp(~p Q" K) + exp(~(108(1 + exp(Y(Lin (P R)) — d)1))]

m

> —(Alj + A2j + V]d)

M = 2 in this case because there are only 2 markets: (1) risky markets exposed to hurricane
and earthquake, (2) other markets. The domain D(pj,, A1j, Agj, Q) is defined as the region

where the profits are higher than the loss of capital.

4.4 Welfare

I define welfare as the sum of consumer and producer surplus, net of insolvency costs.

Welfare = Consumer Surplus + Producer Surplus — Insolvency Costs (5)
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Producer surplus represents the total profit earned by producers in the market.
Producer Surplus = Z 11;
J

Consumer surplus is defined as the expected utility in dollar terms. The consumer surplus is
normalized to outsider option j’. The following expression is the consumer welfare derived

from social surplus function.

1
Consumer Surplus, = — E E [a—l log( E exp(aPem + o Ry + Ekm) + cons)] (6)
m i keD

In the event of an insurer’s failure, State Guaranty Funds provide a safety net for policy-
holders by covering their claims. To finance these obligations, these funds levy assessments
on the remaining solvent insurers. This paper utilizes data on these guaranty association
assessments to approximate the costs of insolvency, which are defined as the claims that
insolvent firms are unable to fulfill. It is important to acknowledge that this is not a perfect
measure of insolvency costs. The assessments are a transfer to policyholders and are subject
to statutory coverage limits, meaning they may not fully capture the total losses incurred.
Nevertheless, these assessment data represent the most suitable and currently available proxy

for the direct costs of insurer insolvency.

4.5 Equilibrium

I focus on pure strategy subgame perfect equilibrium. The equilibrium is a set of households’

insurance choices, insurers’ decision {pjm,, A1, A2;}, such that the following statements hold:

1. Given price pj;,, and rating R;, households maximize utility by choosing insurance.

Consumers’ discrete choice lead to logit demand market shares:

exp(a1pjm + 2 R; + &im) (7)

S =
! ree exp(a1prm + aa Ry + Ekm)
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C is choice set.

2. Given the insurance demand function, {p;n,, A1;, As;} solve insurers’ optimization prob-

lem in equation (4).
3. Market clears: ¢*(pn, R) = ¢*(Pm, R).

4. Assessments collected by Guaranty funds are equal to insolvency costs.

5 Estimation

5.1 Demand Estimation

For demand estimation, I first construct moment conditions. The assumption of the moment
condition is that the unobserved product characteristics are not correlated with the instru-
mental variable. Since I do not observe the uninsured, I choose an insurer j that has most

observations as the outside option. Therefore, I revise the moment condition as

E([ﬁjmt - éj’thzjmt - Zj’mt]) =0

&jme is the unobserved product characteristics and zj,,,; is the instrumental variable. Further-
more, since I only observe price change and I need to recover time 0 price from the demand
estimation, to avoid multicollinearity, I take time difference to construct the moment condi-

tion. The final moment condition for demand estimation is

E([(&mt = Eimt—1) = (Eirme — Erme—)][(Zimt — Zjme—1) — (Zrmt — Zjrme—1)]) = 0

For instrumental variables, I use claim amount (losses) of the same insurer in another
market as the instrument for price. Since insurers may adjust prices if there are losses from

another market, the instrumental variable is relevant to prices. Besides, losses of property
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insurance from other markets are usually related to natural disasters or accidents, which are
exogenous to prices. I use a credit rating standard change as the instrument for credit rating.
The credit rating standard change is relevant because it will affect values of credit rating.
Besides, the trigger of the standard change is a severe hurricane, which is exogenous. In 2005,
credit rating standards became stricter after hurricane Katrina. For example, A.M. Best
imposed extra stress test for the 2nd following catastrophe event. When evaluate potential
catastrophe losses, S&P changed from 100 year to 250 year modeling. Fitch changed from
evaluation of single worst event to Tail Value at Risk (TVaR). The Tail at Value at Risk
is to evaluate the average losses in worst-case scenarios. Combining TVaR and revision in
catastrophe modeling, the insurer will need to hold 10% more capital in order to maintain the
same Fitch credit rating, if the insurer had exposure to catastrophe risks. The instrument
for credit rating is a difference-in-difference type of instrumental variable. The instrument
is treated; xreform,. The variable reform, is equal to 1 after year 2006 when the change of
credit rating standards happened. Treated; is defined as the following equation.

property underwriting in treated states;

tI‘eatedj = total underwriting;

From the definition above, treated; is defined as the share of property underwriting in treated
states as of the total underwriting. If an insurer has more property underwriting in the

disaster-prone regions, then this insurer is more likely to be treated.

Since I only observe price change and revenue market share data, after some algebra,

the difference in unobserved product characteristics is defined as

(éjmt - fjm,t—l) - (gj’mt - gj’m,t—l)
=(logwjmt —log wjm,i—1) — (log Wjrms — log Wirm t—1) — @1jm(djme — djm,i—1)
+ & jim (djrme — djrme—1) — (10g djime —log djm i—1) + (log djims — log djim 1—1)

—ag[(Rjt — Rj—1) — (Rjry — Rjry—1)]

For detailed derivation of the above expression, please see Appendix 8.5. In the equation
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above,
t
Pjms
djme = [T =

s=1 pjm,s—l

This means d;,,; is the cumulative price change across years.
A1jm = Q1Pjm0,

A1j'm = O1Pj'mo

During the estimation, I directly estimate &, and &jjr,,. Suppose there are 1000 combina-
tion of j and m. Since o is common across all &, and &/, there will be 1000 equations
and 1001 unknowns. Therefore, I normalize the time 0 price of the median firm to be 1 and

solve for the rest of the ay, pjmo, and pjimo.

The estimated coefficients are &; = —2.3759 and A&, = 0.0409. Price elasticity is

computed using the following expression:
price elasticity;,, = a1 X pjm X (1—Sjm)

where pj,,, denotes the price and S;,, represents the market share. The median estimated
price elasticity is —2.38. The scale of the price elasticity is similar to the price elasticity
estimated in Grace et al. (2004), which find that the elasticity for catastrophe coverage is
around -1.9 and the elasticity for non-catastrophe coverage is around -0.4. Figure 5 presents
the distributions of the estimated time-0 prices and price elasticities. The small peaks in
both tails of the distribution arise because I winsorize extreme time-0 prices to account for

the limited number of observations in each estimation.
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Table 4: Estimation Results of Demand Parameters

Variable Coefficient

a; (Price Sensitivity) — -2.3759™**
(0.1669)

ay (Credit Rating) 0.0409***
(0.0001)

Note: Standard errors are in parentheses. ***p < 0.01, **p < 0.05, *p < 0.1

This table shows estimation results and standard errors of demand estimation.

5.2 Supply Estimation

On the supply side, I estimate the key components required for the counterfactual analysis.
The random shocks V]‘?l are inferred based on the Karush—Kuhn-Tucker (KKT) conditions and
insurers’ insolvency decisions, following an approach similar to the supply-side estimation
in BLP. The underlying assumption is that the observed data reflect the optimal decisions
of insurers in a competitive market. The quantity of reinsurance, ()7, is computed by
dividing the observed reinsurance premium by an approximate unit price p™. Note that
the unit price p™ is assumed to be identical across all insurers. I estimate the parameters
of the required capital function K(-) and the credit rating function g(-) using a generalized
additive model (GAM). Parameters governing the distributions of losses and returns on risky
assets are also estimated from the data. In addition, I estimate the functions determining
reinsurance payments and the probability of insolvency directly from observed data. Finally,
I use assessments from the Guaranty Association to approximate the social costs associated

with insurer insolvency.
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Table 5: Supply Estimation

Parameters or | Method
variables

V]C-l Random shocks | Estimation of supply system
in  insolvency | (FOC + insolvency decisions)
decisions

Q5 Reinsurance Calculate from reinsurance pre-
quantity miums, by dividing p™©

L, o | Parameters of | Estimate from data
shocks

K(.), Policy and | Estimate from data

g(+) credit  rating
functions

d, k Parameters of | Estimate from data
payments of
reinsurance
Insolvency so- | Estimate from Guaranty associ-
cial costs ation assessments
Insolvency Match with data
probability

Notes: This table shows items that need to be estimated in the supply estimation. The second column shows

the parameters and variables to be estimated. The last column explains methods to estimate parameters.

5.2.1 Insolvency Rate

I directly estimate the insolvency rate from the data. On average, there are about 3.3

property insurers became insolvent each year and the average insolvency rate is 0.26%.
5.2.2 Credit Rating Function

I use the following Generalized Additive Model to estimate the credit rating function
9()-
4
9(X1, Xo, ..., Xy) = Zfl(Xl)
=1

f1(X;) is a smooth specifier, which is a weighted sum of basis functions. I use a spline with
shrinkage to select variables. Only variables that are significant are included in optimization
problems. Variables X; to X, correspond to variables in the credit rating function g(-).
These variables are written premium in risky market, written premium in less risky market,

reinsurance, expected loss amounts, share of risky assets, and total assets. Please see the
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credit rating function below.

Ao
R; =9(q(p1,R), q¢(p2, R), ﬁ#hj + A2j)
J J

Since the credit rating standards changed in 2005, I estimate the credit rating function
separately for the periods before and after the policy change. The out-of-sample accuracy
rate from the GAM estimation is approximately 0.50 before the policy change and 0.41
after it. Although these accuracy rates are not particularly high, they represent the best
predictive performance obtained in my analysis. Figure 6 illustrates the relationship between
the independent variables and credit ratings prior to the standard change. The results suggest
that larger total assets are associated with higher credit ratings, while a higher share of risky
assets is associated with lower credit ratings. Similarly, Figure 7 depicts the relationship
between the independent variables and credit ratings after the standard change. Both Table
15 and Table 16 indicate that the variable ‘written premium in less risky markets’ is not

statistically significant. Therefore, it is excluded from the optimization problem.
5.2.3 Required Capital Function

Similar to credit rating function, I use generalized additive model (GAM) to estimate

required capital function K (+). Please see the expression below.

3
K<X17 X27 X3) = Z fl(Xl>
=1

Inputs in the generalized additive model are the same as the K (-) function.

K(Q(ph R)? Q(p27 R)? A2j)

Since there was a policy change in 2017, I separately estimate the required capital function
for the periods before and after the policy change. The R? of the test sample is 96.62% before

the policy change and 90.57% afterward. Figures 8 and 9 present the estimation results of the
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required capital function using a Generalized Additive Model (GAM). The results indicate
a positive relationship between the level of risky assets and the required capital, suggesting
that firms with higher exposure to risky assets are required to hold more capital. Tables 17

and 18 confirm that all explanatory variables are statistically significant.
5.2.4 Function of Reinsurance

Based on the scatter plots of the quantity of insurance and the quantity of reinsurance
presented in Figure 10, I approximate the reinsurance function using multivariable quantile
regressions. The following table reports the results of the median (50th percentile) quantile

regression. The intercept of the quantile regression is 0.

Table 6: Results of Quantile Regression

quantity of reinsurance

(Intercept) 0.000
(0.000)
q in risky market 0.266™*
(0.005)
q in less risky market 0.213*
(0.010)
Num. obs. 36652
Percentile 0.500

***p < 0.001; **p < 0.01; *p < 0.05
Notes: This table shows quantile regression results for medians.

5.2.5 Distributions, Payment from Reinsurance, and Insolvency Costs

I estimate the distribution of returns on risky assets and loss rates from the data. The
normal inverse Gaussian (NIG) distribution, which has a closed-form probability density
function (pdf), fits the empirical distribution of returns on risky assets well. See Figure 11
for the estimated distribution. For detailed parameter estimates and the pdf of the NIG

distribution, please refer to Appendix 8.6.

Due to the high frequency of zero-valued observations in loss rates, I estimate their

distribution using a hurdle log-normal model. The estimated distributions are displayed in
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Figure 12. The results show that the mean loss rate in risky markets is higher than in less
risky markets. I define risky markets as those with exposure to hurricane and earthquake
risks. Details on parameter estimation and the pdf of the hurdle log-normal distribution can

be found in Appendix 8.7.

The reinsurance payment function is also estimated from the data. The original pay-

ment function is defined as:

min{pre ;e’ maX{O, Z(LJWQ(pma R)) - d}}

To facilitate differentiation during the optimization process, I approximate the max and
min functions using smooth counterparts: softmax and softmin. The smoothed reinsurance

payment function becomes:

—ll{: log(exp(—p"“Q7k) + exp(—(log(1 + exp(Y_(Ljmq(Pm, R)) — d)))k))

For a detailed derivation of this approximation, please refer to Appendix 8.8. The reinsurance
deductible d and the smoothness parameter k are estimated from the data. The results

suggest that £k = 5 and d =$2.26 million.

Finally, I measure the social cost of insolvency using Guaranty Association assessments.
These represent the claims left unpaid by insolvent insurers and subsequently borne by the

public. On average, each insolvency leads to a societal loss of approximately $25.095 million.
5.2.5 Random Shocks of Insolvency

I estimate the random shocks of insolvency, v/{, using the Karush-Kuhn-Tucker (KKT)
conditions and observed insolvency decisions. This approach parallels the supply-side esti-
mation in BLP. I assume that the insurers’ observed choices represent their optimal decisions.
When the capital requirement constraint in Equation 4 binds, 1 jointly solve for the Lagrange

multiplier A and the insolvency shock V]C-l. When the constraint is not binding, A = 0, and I
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solve for V]C-l such that the first-order conditions are satisfied. Figure 3 presents the estimated
distribution of uj-l, with a median value of $583.62 million.

Figure 3: Estimation Results of Random Shocks of Insolvency

Distribution of Random Shock of Insolvency
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Notes: This figure shows results of estimation of random shocks of insolvency. Winsorization was applied to the results at the
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5% level.

During the supply-side estimation, most parameters are identified directly from the
data. To estimate the random shocks of insolvency, I rely on a revealed preference approach,
assuming that the observed choices represent insurers’ optimal decisions in the market. I then
recover the insolvency shocks de by solving for values that satisfy the Karush—Kuhn—Tucker
(KKT) conditions. This procedure allows 1/]‘-1 to capture the discrepancy between the theoreti-
cal model and real-world behavior, effectively absorbing model misspecification or unobserved

heterogeneity.

6 Counterfactual Policy Analysis

In this section, I conduct counterfactual analyses to evaluate the trade-off between insurer
solvency and policy affordability as capital regulation becomes stricter. My theoretical frame-
work allows for a deeper exploration of this trade-off than is possible with reduced-form
methods alone. While the reduced-form evidence presented in Section 3 establishes the sta-

tistical relationships between capital regulation, insolvency risk, and premiums, it cannot
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fully capture the underlying economic mechanisms driving these outcomes or predict how
insurers and consumers would behave under policy regimes that have not been observed.
Second, the structural model enables me to quantify the welfare trade-offs at play. For in-
stance, I can simulate the impact of a heightened regulatory threshold on the equilibrium,
observing how it affects insurer failure rates (solvency) and the resulting premium adjust-
ments (affordability). This allows for a quantitative assessment of the costs and benefits of

such a policy change from the perspectives of both consumers and insurers.

The initial counterfactual analysis will focus on tightening the existing capital require-
ments. This exercise will trace out the efficiency frontier between solvency and affordability,
providing a nuanced understanding of the potential consequences of various policy choices.
Building on these insights, the second part of the counterfactual analysis will then disen-
tangle the roles of capital regulation and credit ratings in mitigating insolvency risk. By
simulating a scenario where capital regulation is removed, I can evaluate the extent to which
market-based discipline, through credit ratings, can effectively constrain insurer risk-taking.

This will shed light on the unique contribution of formal regulation in the insurance market.

6.1 A World with Stringent Capital Requirement

Building on the baseline results, this counterfactual analysis explores the mechanism of cap-
ital regulation by evaluating its impact on the trade-off between solvency and affordability.
I simulate market outcomes under progressively stricter capital requirement thresholds, «.
Within the model, all agents optimize given the regulatory environment, as consumers max-
imize utility and insurers maximize firm values. The objective is not to identify a single
optimal threshold, x*, but rather to characterize how equilibrium solvency and affordability
levels move in response to changes in x. This exercise provides direct insight into the costs

and benefits of tightening capital regulation.

A+ Ay

K <—=
K(q<p17 R)a Q(va R)a Q;ea A2j)

(Capital requirement)
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Recall that welfare is

Welfare = Consumer Surplus 4+ Producer Surplus — Insolvency Costs

Because of computational constraints, I evaluate only several threshold levels and compare
the resulting welfare outcomes with those from the original data. In the following table, the
capital threshold is set to x = 6. At this threshold, approximately 25% of property insurers
in the original sample hold capital below this level. After tightening the capital regulation,
both solvency and insurance prices increase significantly. This result is consistent with the
reduced-form evidence in Section 3, which indicates capital regulation trades off solvency and
affordability. In this counterfactual analysis, the higher prices reduce insurance demand, and
overall profitability decreases as the demand of insurance is elastic and operation profits of
insurers reduce. The number of insurers in the market also increases; however, most entrants

are smaller, leading to higher market concentration.

When comparing welfare outcomes, a higher threshold x leads to lower firm profits,
resulting in an decrease in producer surplus. Besides, consumer surplus declines as the
threshold k increases. In the baseline case, the average annual consumer surplus is approx-
imately $413 million, whereas under a higher threshold «, it falls to $226 million. At the
same time, because fewer firms become insolvent when « is higher, aggregate insolvency costs
decrease. Since there are many insurers in the market, the magnitude of producer surplus is
large relative to consumer surplus and insolvency costs. However, if the model incorporates
a free-entry condition, producer surplus becomes zero. In that case, it is more meaningful

to focus on aggregate welfare, defined as consumer surplus minus insolvency costs.
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Table 7: Higher threshold of capital requirement decreases insolvency and affordability

variables mean (ori) mean (counter) mean diff median (ori) median (counter) median diff
insolvency 0.0024 0.0009 -0.0016 0.0000 0.0000 0.0000
p in risky market 1.0239 8.4142 7.3903 1.0000 2.2565 1.2565
p in less risky market 1.1343 9.4254 8.2911 1.0000 3.5069 2.5069
q in risky market 16.8477 6.6279  -10.2198 3.3140 0.0005 -3.3135
q in less risky market 4.7221 2.9834 -1.7387 0.0006 0.0000 -0.0006
profits 32.3665 20.7606  -11.6059 1.6199 2.4098 0.7899
operation profits 16.9034 0.8055  -16.0979 0.0170 -0.5645 -0.5814
investment profits 18.7767 19.9551 1.1784 1.4423 1.5338 0.0914
risky assets 376.1088 409.1612  33.0524 30.7232 39.7698 9.0465
Qre 5.3624 2.3520 -3.0105 0.5951 0.0486 -0.5464
number of firms in risky market 1193.8808 1562.3955  368.5148 1195.0000 1577.0000 382.0000
number of firms in less risky market 803.2405 1562.3955  759.1550 815.0000 1577.0000 762.0000
HHI in risky market 0.0023 0.0041 0.0018 0.0023 0.0041 0.0017
HHI in less risky market 0.0048 0.0127 0.0079 0.0047 0.0085 0.0038

Notes: This table shows comparison of statistics of original data and counterfactual. The first three columns display mean of variables. The last three columns display median

of variables. Columns (1) and (4) show statistics of original data. Columns (2) and (5) show results of counterfactual analysis when threshold of capital requirement is high.

Columns (3) is equal to column (2) minus column (1). Similarly, column (6) is equal to column (5) minus column (4). The unit of q and Qe is a million. The unit of profits,

operation profits, investment profits, and risky assets is a million dollars.



6.2 A World without Capital Regulation

The second counterfactual analysis disentangles the respective roles of capital regulation and
credit ratings in constraining insolvency risk. I examine whether credit ratings alone can
effectively prevent insolvency. To isolate the role of ratings, I remove capital regulation from

the optimization problem. The resulting optimization problem is given by

max E(H] + Alj + AQj) (8)

{pj7n7Alj7A2j}

s.t.

1, :max{[Z(pjm — Ljm — Ezp;)q(Pm, R) —p™° Q¢ — FCj + 11415 + 1242

m

— + Toa(exp(~p"*Q}°R) + exp(~(08(1 + xp(Y(Lima(Ps R)) — d)E)]

— (Ayj + Agj) — l/;-i} (Profits with limited liability)
Agj N
R;j =g(q(p1,R), q(p2, R), i, Ayj + Ayj) (Credit rating)
Arj + Agj
Q5 =h(q(p1, R), q(ps, R)) (Reinsurance)

During the optimization process, since the choice of price p;,, and the opponents’ prices p_; .,
jointly determine the quantity ¢(p,,, R), all insurers make their decisions simultaneously each
year in the algorithm. After several iterations, if no firm has an incentive to deviate from
its chosen price, asset allocation, or reinsurance strategy, the outcome converges to a Nash

equilibrium. The quantity of insurance is given by

eéjm

R)=— 5 Nu
q(pm’ ) Zk €6km

where 0, = @1pjm + R;j + & Ny, is the market size which is the total quantity of

insurance in a market m.

Table 8 reports the results. Without capital requirements, the insolvency rate increases
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by 0.09 percentage points. Insurance becomes more affordable as prices decrease by about
5.1%. Some insurers adopt riskier strategies by lowering prices and holding more risky assets.
Insurers unable to capture sufficient market share experience lower operational profits. In
the counterfactual scenario, although more insurers participate with small market shares,
market concentration rises, as reflected in an increase in the Herfindahl-Hirschman Index

(HHI), particularly in less risky markets.
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Table 8: Removing capital requirement increases insolvency and affordability

v

variables mean (ori) mean (counter) mean diff median (ori) median (counter) median diff
insolvency 0.0020 0.0029 0.0009 0.0000 0.0000 0.0000
p in risky market 1.0409 0.9877  -0.0532 1.0000 1.0300 0.0300
p in less risky market 1.1562 0.9058  -0.2504 1.0000 0.9941 -0.0059
q in risky market 23.0784 13.8387  -9.2397 5.3465 0.0755 -5.2710
q in less risky market 7.4993 10.4378 2.9385 0.0228 0.6883 0.6656
profits 66.1967 41.2910  -24.9056 2.7556 3.9554 1.1998
operation profits 36.4701 6.9860 -29.4841 0.0264 -0.1330 -0.1594
investment profits 32.5734 34.3050 1.7316 2.1329 2.1196 -0.0132
risky assets 662.9585 690.1300 27.1715 47.1503 52.5216 5.3713
Qre 9.4960 5.8026  -3.6935 0.9196 0.3758 -0.5438
number of firms in risky market 1099.8335 1420.5988  320.7653 1105.0000 1400.0000 295.0000
number of firms in less risky market 771.1310 1420.5988  649.4677 761.0000 1400.0000 639.0000
HHI in risky market 0.0021 0.0044 0.0024 0.0020 0.0042 0.0022
HHI in less risky market 0.0043 0.0230 0.0188 0.0044 0.0138 0.0094

Notes: This table shows comparison of statistics of original data and counterfactual. The first three columns display mean of variables. The last three columns display median
of variables. Columns (1) and (4) show statistics of original data. Columns (2) and (5) show results of counterfactual analysis when removing capital requirement. Columns
(3) is equal to column (2) minus column (1). Similarly, column (6) is equal to column (5) minus column (4). The unit of q and Qe is a million. The unit of profits, operation

profits, investment profits, and risky assets is a million dollars.



6.3 A World without Capital Regulation and High Rating Salience

A central question in financial regulation is whether market discipline, driven by vigilant
consumers, can serve as a viable substitute for formal government oversight. If the salience
of risk indicators like credit ratings were sufficiently high, consumers could theoretically dis-
cipline insurers into holding adequate capital, thereby mitigating insolvency risk without the
need for binding capital requirements. This would be a first-best outcome, as it would re-
duce the potential deadweight losses associated with regulatory capital. I test this hypothesis

directly within my structural framework.

In the baseline model, the estimated demand coefficient on price is -2.3759, while the
coefficient on credit ratings is 0.0409. This indicates that in the current market, consumers
are significantly more responsive to price than to an insurer’s credit rating. To simulate a
world with powerful market discipline, I conduct a counterfactual analysis where I dramat-
ically increase the salience of credit ratings. Specifically, I increase the rating coefficient by

a factor of 25 to 1.0225.

Table 9 presents the results for a market without capital regulation but with high
credit rating salience. When consumers are more sensitive to credit ratings, the insolvency
rate decreases by 0.14 percentage points. Insurers with lower credit ratings tend to reduce
prices to attract consumers, resulting in lower average prices compared to a market in which
consumers are less responsive to credit ratings. Consequently, the average operating profits
in the market decline. To compensate for the reduced profitability, insurers have an incentive
to invest in riskier assets. Although the market features a larger number of smaller insurers,
those offering lower prices capture a greater market share, leading to an increase in the
Herfindahl-Hirschman Index and higher market concentration. Thus, while heightened credit
rating salience can mitigate insolvency risk, it may simultaneously contribute to greater
market concentration. This result suggests that increasing consumers’ rating salience may

not be a perfect solution to improving market stability.
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Figure 4 illustrates that the decline in profits is driven by increasing market concen-
tration and aggressive pricing behavior. In Figure 4, panels (a), (c), and (e) show the
relationships between the quantity of insurance and price, operational profits, and risky as-
sets in the counterfactual scenario, while panels (b), (d), and (f) present the corresponding
relationships in the baseline data. Panel (a) shows that some insurers cut prices to gain
larger market shares. For insurers that successfully capture the market, operational profits
are higher. Moreover, insurers engaging in more aggressive pricing tend to hold a greater

proportion of risky assets.
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Table 9: High Rating Salience Improves Solvency and Increases Market Concentration

variables mean (ori) mean (counter) mean diff median (ori) median (counter) median diff
insolvency 0.0022 0.0008 -0.0014 0.0000 0.0000 0.0000
p in risky market 1.0297 0.8954 -0.1343 1.0000 1.0300 0.0300
p in less risky market 1.1442 0.8136 -0.3306 1.0000 0.8360 -0.1640
q in risky market 19.6851 16.3366 -3.3485 4.0859 0.0000 -4.0859
q in less risky market 6.0147 14.8395 8.8248 0.0011 0.0000 -0.0011
profits 45.1599 34.0577  -11.1022 2.1445 0.8386 -1.3059
operation profits 23.7183 8.2000  -15.5183 0.0157 -0.5887 -0.6044
investment profits 24.1664 25.8578 1.6913 1.7740 1.9374 0.1635
risky assets 481.5485 506.3704  24.8219 36.5159 44.7321 8.2163
Qre 6.9286 7.3834 0.4548 0.6513 0.0000 -0.6513
number of firms in risky market 1147.3953 1513.1399  365.7446 1125.0000 1514.0000 389.0000
number of firms in less risky market 779.4315 1513.1399  733.7084 761.0000 1514.0000 753.0000
HHI in risky market 0.0022 0.4473 0.4451 0.0021 0.1721 0.1700
HHI in less risky market 0.0045 0.6708 0.6663 0.0044 0.6264 0.6220

Notes: This table shows comparison of statistics of original data and counterfactual. The first three columns display mean of variables. The last three columns display median
of variables. Columns (1) and (4) show statistics of original data. Columns (2) and (5) show results of counterfactual analysis when removing capital requirement. Columns
(3) is equal to column (2) minus column (1). Similarly, column (6) is equal to column (5) minus column (4). The unit of q and Qe is a million. The unit of profits, operation

profits, investment profits, and risky assets is a million dollars.



Figure 4: Insurers undercut prices in risky market when no capital requirements
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Notes: This figure compares pricing and profits of counterfactual and original data. They are scatter plots to relationship

between quantity of insurance and other outcome variables, in order to provide more details of the results. Panels (a) (c) (e)

display results of counterfactual analysis after removing capital regulation. Panels (b) (d) (f) display results of original data.
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7 Conclusion

In recent years, policymakers have debated whether capital regulation for U.S. property and
casualty insurers should transition from a static formula-based framework to a model-based
approach. Before making such a shift, it is crucial to deepen our understanding of how
capital regulation affects market outcomes and what specific roles it plays in the presence
of credit ratings. This paper addresses two central questions: (1) how capital regulation
influences insurer solvency and market outcomes, and (2) how capital regulation constrains

insolvency when credit ratings are an important market discipline mechanism.

I first provide empirical evidence on the impact of capital regulation on insurer solvency
and product affordability. The analysis indicates that while capital regulation strengthens
solvency, it also increases insurance prices. Specifically, a $1 million increase in required
capital leads to a $3.34 million increase in actual capital held and a 0.218 percentage point

rise in insurance premiums.

To further investigate these dynamics, I develop a theoretical framework that jointly
incorporates capital requirements and credit ratings. Using structural estimation, I conduct
counterfactual simulations to inform future policy design. The first counterfactual analysis
produces results consistent with the reduced-form evidence: stricter capital requirements
improve solvency but also raise prices. The second counterfactual analysis examines the
relative roles of capital regulation and credit ratings in mitigating insolvency risk. A key
question is whether credit ratings alone can sufficiently discipline insurers. The counter-
factual results indicate that, in the absence of capital regulation, the insolvency rate would
increase by 0.09 percentage points, while insurance premiums would decrease by about 5.1%.
The third counterfactual analysis explores a market without capital regulation but with high
credit rating salience. When consumers place greater weight on credit ratings, the insolvency
rate declines; however, lower-rated insurers reduce prices to attract customers, which com-

presses operating profits and incentivizes riskier investment behavior. As a result, market
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concentration increases despite the lower insolvency rate. This finding suggests that enhanc-
ing consumer attention to credit ratings alone may not offer a perfect substitute for capital

regulation.

Overall, the findings underscore the critical role of capital regulation in maintaining
market stability. Even with robust credit rating mechanisms, capital requirements remain

essential to curb excessive risk-taking and preserve solvency in the insurance sector.
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8 Appendix

8.1 Figures
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Figure 5: Estimation Results of Price and Elasticity in Demand Estimation
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Notes: This figure shows results of estimation of price and elasticity. The results are winsorized at the 5% level.
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Figure 10: Scatter Plots of Quantity of Insurance and Quantity of Reinsurance
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Figure 6: Estimation Results of Credit Rating Function before Year 2005
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Notes: This figure shows results of estimation of credit rating function before credit rating standard change. The x-axis shows

level of variables. The y-axis displays values of the smooth specifier of generalized additive model.
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Figure 7: Estimation Results of Credit Rating Function after Year 2005
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Notes: This figure shows results of estimation of credit rating function after credit rating standard change. The x-axis shows

level of variables. The y-axis displays values of the smooth specifier of generalized additive model.
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Figure 8: Estimation Results of Required Capital Function before Year 2017
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Notes: This figure shows results of estimation of required capital function before policy change. The x-axis shows level of

variables. The y-axis displays values of the smooth specifier of generalized additive model.
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Figure 9: Estimation Results of Required Capital Function after Year 2017
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Notes: This figure shows results of estimation of required capital function after policy change. The x-axis shows level of

variables. The y-axis displays values of the smooth specifier of generalized additive model.
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Figure 11: Estimation Results of Return of Risky Assets
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Figure 12: Estimation Results of Loss Rates
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Notes: This figure shows results of estimation of loss rates. Panel (a) is the loss rate in risky market, which has exposure

to hurricane and earthquake. Panel (b) is the loss rate in less risky market.
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8.2 Tables

Table 10: Summary of catastrophe-prone areas

Disaster Catastrophe-prone areas

Hurricane  Hawaii, District of Columbia and states and commonwealths bordering on the At-
lantic Ocean and/or the Gulf of Mexico including Puerto Rico.

Earthquake Alaska, Hawaii, Washington, Oregon, California, Idaho, Nevada, Utah, Arizona,
Montana, Wyoming, Colorado, New Mexico, Puerto Rico, and geographic areas in
the following states that are in the New Madrid Seismic Zone - Missouri, Arkansas,
Mississippi, Tennessee, Illinois and Kentucky.

Notes: This table summarizes the catastrophe-prone areas which I use to define the treated regions.

Table 11: Summary statistics

Entire sample Treated Control
mean sd  median before after before after
(1) (2) (3) (4) (5) (6) (7)
total adjusted capital 203.9706 392.1466 50.0268 231.0879 266.4900 109.5418 122.6142
direct premiums written 251.0444 385.7734 72.0020 284.8771 347.2687  98.1380 134.7411

price change 2.5288 5.1154  0.0569 3.0778 3.7489 0.7122 0.9156
net premiums written 146.0623 309.4856 13.4776 166.0407 195.5490  66.8428  84.6467
RBC ratio 72.8135 136.5142 11.3923  68.5824  63.8509  87.3448  85.2334
reserve 162.2866 381.1700  9.0012 186.9741 219.5984  77.0803  87.2492
required capital 284768  62.6220 3.2278  31.6679  39.2074  12.9307  15.2807
surplus 203.7210 388.6703 50.1500 230.3006 265.2168 111.8157 123.3460
treatment 0.6225 0.4848  1.0000 1.0000 1.0000 0.0000 0.0000

Notes: This table shows summary statistics. Columns (1) to (3) show the entire sample. Columns (4) to (7) displays means. Columns (4) and (5) are treated group before
year 2017 and after year 2017 respectively. Columns (6) and (7) are control group before year 2017 and after year 2017 respectively. Except for price change, RBC ratio, and

treatment, the unit of variables is million. The unit of price change and RBC ratio is percent.
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Table 12: First stage (binding)

Dependent variable:

required capital surplus price change  required capital surplus price change
(1) (2) (3) (4) (5) (6)
treated xreform 2.6247** 7.308* 0.329* 3.268* 12.617** 0.462***
(0.975) (4.140) (0.158) (0.715) (3.206) (0.126)
Observations 6,055 6,055 6,055 9,835 9,835 9,835
R? 0.0261 0.0271 0.0233 0.0303 0.0334 0.0280
Note: *p<0.1; *p<0.05; ***p<0.01

Notes: Columns (1), (2), and (3): Average RBC ratio before treatment is within 1 standard deviation to threshold 2. Columns (4), (5) and (6): Average RBC ratio before

treatment is within 2 standard deviations to threshold 2.

Table 13: IV regressions (binding)

Dependent variable:

surplus price change surplus price change
(1) (2) (3) (4)
required capital 2.785** 0.125* 3.861** 0.141**
(1.244) (0.075) (0.790) (0.048)
Observations 6,055 6,055 9,835 9,835
R? 0.380 0.0233 0.404 0.0280
Note: *p<0.1; *p<0.05; **p<0.01

Notes: Columns (1) and (2): Average RBC ratio before treatment is within 1 standard deviation to threshold 2. Columns (3) and (4): Average RBC ratio before treatment is
within 2 standard deviations to threshold 2.
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Table 14: Higher RBC ratios lead to lower probability of insolvency

Dependent variable:

insolvency
OLS panel
linear

(1) (2) (3) (4)
RBC ratio —0.0001** —0.0001*** —0.00003*** —0.00002***

(0.00001) (0.00001) (0.00000) (0.00000)
Constant 0.054***

(0.001)
Observations 61,223 61,223 61,223 61,223
R? 0.002 0.002 0.001 0.0003
Note: *p<0.1; *p<0.05; **p<0.01

Notes: Columns (2) and (3): Control for time fixed effects. Columns (3) and (4): Set insolvency to be 1 when it is 3 years before being insolvent. Column (4): Control for time

and firm fixed effects.
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Table 15: Estimation Results of Credit Rating Function before Credit Rating Standard Change

Estimate Std. Error t value Pr(> |t|)

(Intercept)  3.9741 0.1357 29.3 <2e-16 ***
edf Ref.df F p-value
s(q in risky market) 2.9300289 4 6.704  2.19e-06 ***
s(q in less risky market) 0.0003405 4 0.000 0.943
s(total asset) 3.6973535 4 79.222 < 2e-16
s(share of risky assets)  3.6749247 4 77.370 < 2e-16 ***
s(reinsurance) 3.9202691 4 113.764 < 2e-16 ***

Signif. codes: 0 “*** 0.001 “***’ 0.01 **’ 0.05 < 0.1 ‘’ 1
Notes: The last column shows whether each smooth specifier is significant. The edf stands for effective degrees of freedom. It quantifies the complexity
or "wiggleness” of the smooth function for a given predictor. The Ref.df, or reference degrees of freedom, is a value used in the calculation of the

F-statistic and the corresponding p-value to test the significance of the smooth term.
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Table 16: Estimation Results of Credit Rating Function after Credit Rating Standard Change

Estimate Std. Error t value Pr(> |¢])
(Intercept) 43.69 14.17 3.083  0.00205 **

edf Ref.df F p-value

s(q in risky market) 3.8971876 4 19.93  <2e-16 ***
s(q in less risky market) 0.0006075 4 0.00 0.915

s(total assets) 3.2328792 4 87.65 <2e-16 ***
s(share of risky assets)  0.9982281 4 107.50 <2e-16 ***
s(reinsurance) 7.7831365 9 66.09 <2e-16 ***

Signif. codes: 0 “*** 0.001 “***’ 0.01 **’ 0.05 < 0.1 ‘’ 1
Notes: The last column shows whether each smooth specifier is significant. The edf stands for effective degrees of freedom. It quantifies the complexity
or "wiggleness” of the smooth function for a given predictor. The Ref.df, or reference degrees of freedom, is a value used in the calculation of the

F-statistic and the corresponding p-value to test the significance of the smooth term.
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Table 17: Estimation Results of Required Capital Function before Policy Change

Estimate Std. Error t value Pr(> |t|)

(Intercept)  2250.383 3.961 568.2  <2e-16 ***
edf Ref.df F p-value
s(q in risky market) 4.309 9 23.23 <2e-16 ***
s(q in less risky market) 7.614 9 61.62  <2e-16 ***
s(risky assets) 8.985 9 63396.95 <2e-16 ***
s(reinsurance) 4.630 9 3245 <2e-16 ***

Signif. codes: 0 “*** 0.001 “***’ 0.01 **’ 0.05 Y 0.1 ‘1
Notes: The last column shows whether each smooth specifier is significant. The edf stands for effective degrees of freedom. It quantifies the complexity
or "wiggleness” of the smooth function for a given predictor. The Ref.df, or reference degrees of freedom, is a value used in the calculation of the

F-statistic and the corresponding p-value to test the significance of the smooth term.

Table 18: Estimation Results of Required Capital Function after Policy Change

Estimate Std. Error t value Pr(> |t|)

(Intercept)  4815.984 8.132 592.2  <2e-16 ***
edf Ref.df F p-value
s(q in risky market) 1.109 9 2.327  2.52e-06 ***
s(q in less risky market) 3.811 9 20.855 < 2e-16 *F*
s(risky assets) 8.958 9 99567.155 < 2e-16 ***
s(reinsurance) 1.136 9 2.955 2.91e-07 ***

Signif. codes: 0 “*** 0.001 “**’ 0.01 “*’ 0.05 Y 0.1 ‘1
Notes: The last column shows whether each smooth specifier is significant. The edf stands for effective degrees of freedom. It quantifies the complexity
or "wiggleness” of the smooth function for a given predictor. The Ref.df, or reference degrees of freedom, is a value used in the calculation of the

F-statistic and the corresponding p-value to test the significance of the smooth term.



8.3 Development of Capital Requirement before 2017

According to Klein (1995), several property-casualty insurers in the United States failed dur-
ing the 1980s due to deficient loss reserves, inadequate pricing, and overly rapid expansion.
The fixed capital requirements in place at the time were insufficient to constrain this rapid
growth, which contributed significantly to these failures. In response, the National Associ-
ation of Insurance Commissioners (NAIC) developed and implemented Risk-Based Capital
(RBC) formulas in the early 1990s, allowing capital requirements to vary with firm-specific
risk profiles and size. The RBC formula for property and casualty insurers was introduced
in 1994. The RBC standards for life and property/casualty (P/C) insurers are based on the
Risk-Based Capital (RBC) for Insurers Model Act (Model #312), originally adopted by the

NAIC in 1993 and most recently revised in 2011.

Beginning January 1, 2015, the NAIC implemented the Own Risk and Solvency As-
sessment (ORSA) Model Act, which mandates that insurers conduct and annually report on
their enterprise risk management (ERM) practices and capital adequacy. ERM refers to a

comprehensive, organization-wide framework for identifying and managing risk exposures.

8.4 Derivation of First-Order Conditions for Supply Estimation

Since [ [ fo = [ [ Joyp+J | Jp, then objective function becomes:

o [D_Pim = Ljm — Exp;)q(pm, R) — p"°Qj° — FC;
{Pjm, A1y, Az} / / x/D(pjmyAlj;A2j’Q;e) Z ’ ! I J J

m

— 1 Tos(exp(—p*Qk) + exp(~(108(1 + exp(Y (Lima(Prm, R)) — d))))

m

+r1Avj +raAgjl fr(re) fr, (Lj1) fr, (Lj2)dradLjydLja—

///Q(Au+A2j+Vf)fr(rz)le(le)sz(Lj2)d7”2dLj1dLj2

+ / // (A1j + Agj + V) fr(r2) fr, (Lj1) fro (Lj2)dradLjydLjs + Ay + Ag;
D(pjm,A1j,A25,Q%°)
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Further simplify objective function:

e (S (@i — Lim = Bop)a(Bs R)) — Q5" — FC;
{pj'rr:.7A1j7A2j:Q§e} / / /D(pjm,Alj’A%’Q;e) Z J J ' y J

m

~ 2 Toa(exp(~p*Q}°K) + exp(~(108(1 + exp(Y(Lim (P R)) — d))H))

m

+ 1Ay +rodo; + Ary + Agj + V}i]fr(rz)le(le)ng (Lj2)drodLjidLjo — V;-i

s.t.
Asj . .
R; =g(q(p1,R),q(p2, R), ————, A1; + Azj) (Credit rating)
Arj+ Az
2 <— Aiy + Az (Capital requirement)
K(q(p1,R),q(p2, R), Azj)
Q5 =h(q(p1,R),q(p2, R)) = Bo + S19(P1, R) + B2q(p2, R) (Reinsurance)

The domain D(pjm, A1j, Azj, Q}¢) where insurers are solvent is

D (Pim = Ljm — B2p;)a(Pm, R) = p"°Q}° = FC; + roAg; + 11 Ay,

m

— 2 Toa(exp(—p" Q") + exp(~(108(1 + exp(3(Lim (P R)) — ))1))]

m

> —(Aj + Agj + V]d)

M = 2 in this case.

Plug in expression of Q}° to objective function:

{Pjm,A1j,

we ] o i L B T) (o + Frala, )+ ag(a, )~ FC;

m

- % log(exp(—p"(Bo + B1a(P1, R) + F24(Pa, R))k) + exp(—(log(1 + exp(Y (Ljmg(Pm; R)) — d)))k))

m

+ 7‘1A1j + 7‘2A2j + A1j + Azj + V;i]fr(Tg)le (le)sz (ng)dngledng — l/;-i
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s.t.
Agi . .
R; =g(¢(p1,R),q(p2; R), ﬁ%, Ay + Agj) (Credit rating)
J j
A+ Ay

2 <
K(Q(ph R)> Q(p27 R)a A2j>

(Capital requirement)

The domain D(pjm,, A1;, A2;) where insurers are solvent is

> (©jm = Lim — E2p;)a(Pm, R) — p"*(Bo + f1a(P1, R) + B2q(pg, R)) — FC;j + raAsj + 11 Ay

m

- % log(exp(—p"(Bo + f14(P1, R) + B2a(Pa, R))k) + exp(—(log(1 + exp(D  (Ljmd(Prms R)) — d)))k))]

m

> —(Aqj + Agj + l/jd)

M = 2 in this case.

In this section, I am going break down derivatives by parts. First, I take derivative of

the demand function to pj,,, we have:

aQ'm
% = Np1Sjm(1 = Sjm)

Similarly, take derivative of the demand function to R, we have:

anm
OR,

= NmOéQSjm(]. — Sjm)

Nm = qum
k

N, is market size in market m.

FOC w.r.t pj;:

oG  0G OR; 0K dq; 0K OR;
+ Ll fdV —2) + Ll =0
///D [apﬂ OR; 8pj1] / [8(]1 Opj1  OR; Opj
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These are expressions of each components.

oG dq(p;,R)
= R)+ Y (p — L — Eap; — pB1)+
o q(p1;R) i (pj1 — Lj1 p; —p"P1)
9q(p1,R)
9p1 x Hj

exp(—p"¢(Bo + B1g(p1, R) + B2q(p2, R))k) + exp(—(log(1 + exp(L;19(p1, R) + Lj2q(p2, R) — d)))k)

where

Hy = (p"Brexp(—p"(Bo + Brg(p1, R) + f2q(p2, R))k)+

Lj1exp(L;j1q(p1, R) + Lj2q(p2, R) — d)
1 +exp(Lji1q(p1, R) + Lj2q(p2, R) — d)

exp(—(log(1 + exp(L;1q(p1, R) + Lj2q(p2, R) — d)))k))

oG 8(](pm,R) re re
AT :; T{j(pjm = Ljm — Expj —p"B1 — p"P2)+

1

exp(—p"(Bo + F1a(p1, R) + Baa(p2, R)K) + exp(—(log(1 + exp(Lj1a(p1, R) + Lyaa(pa, R) — d))k) e

where

aQ(plv R)
JR

+ B2 IR

Hy = (07 exp(—p" (B0 + ra(p1, R) + Baa(pe, R))K) (m
exp(L;1q(p1,R) + Lj2q(p2, R) — d)
1+ exp(Lj19(p1,R) + Lj2q(p2, R) — d)

dq(p1, R 9q(ps, R
(le q(gll{ )+Lj2 q(glz)L )>)

9q(p2, R) )

exp(—(log(1 + exp(L;1q(p1, R) + Lj2q(p2, R) — d)))k) %

OK 0K 9d4(puR) 0K  94(pyR)
OR; 0(q(p1,R)) OR, d(q(p2,R))  OR;

The FOC for each decision variable x is given by g—f = (0, which requires applying the
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chain rule through the implicitly defined function R;. The derivative of R; is found using

the Implicit Function Theorem: % = 1_8699//853Rj.

dg Iq g2

or,  "or, T PoR,

FOC w.r.t pjs:

0G  0G 0R; 0K 0qy 0K OR;
+ L fdV =2 + =0
///D l@pﬂ OR,; 8pj2] / [8(612) Opja  OR; Opja

oG Jdq(p2, R)
- R) + 222 0,0 [0 — Eap; — p'®
ora q(p2, R) + s (pj2 — Lja — Exp; — p"“Ba)+
9q(p2,R)
Op2

exp(—p"*(Bo + B1a(p1, R) + B2¢(p2, R))k) + exp(—(log(1 + exp(L;19(p1, R) + Lj2q(p2, R) — d)))k) * s

where

Hsz = (p"®Ba exp(—p"(Bo + f19(p1, R) + f2¢(p2, R))k)+

Ljiexp(Lj2q(p1, R) + Lj2q(p2, R) — d)
exp(—(log(1 + exp(L; ,R)+ L; ,R) —d)))k
1 —|—exp(Lj1q(p17R) +Lj2q(p2,R) — d) p( ( g( p( ]1q(p1 ) ]2q(p2 ) ))) ))
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dg — g gy
8193‘2 aij

FOC for Alj:

0G OR; 0K OR;
///D [(Tl Ut OR; aAu] fav=a [ OR; 0A; ] ’

dg _ 9 (_ Ay ) N dg
8A1j 0 (Al;'A‘ifq%') (Alj -+ A2j)2 8(A1j + Agj)
FOC for Ay;:

0G OR; 0K 0K OR,
1 — J — A2 J
/1], l(rﬁ T aA%] fav Al <8A2j TR, 04,

A2j = A—Alj

)-{-

99 _ Oy ( Ay ) L 99
0As; 0 () \(Ay+ 45)% ) 0(Ay + Ay)

Ajj+As;

Primal Feasibility:

9_ _ A+ Ay <0
K(q(p1,R), q(p2, R), Agj)

Dual Feasibility:
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Complementary Slackness:

/\<2_ Ay + Ay )zO
K(Q<p1>R)’q(p2’R>7A2j)

8.5 Construct Moment Condition

qjmt _ etimt
Zkec Qkemt Zkec etkmt

2 10g it = Ujpr — 10g Y pec €4

" Quantity share Sj,,; =

IOg Sjmt - lOg Sj’mt = Ujmt — Uj'mt

= a1(Pjmt — Pjrme) + a2(Rje — Rjrt) + (§jme — Ejrme)

Then fjmt - fj/mt = log Sjmt —log Sj’mt — (ijt - pj’mt) - Oéz(Rj - Rj/t)

Then if take time difference,

(gjmt - gjm,t—l) - (fj’mt - gj’m,t—l)
:(log Sjmt - lOg Sjm,t—l) - (10g Sj’mt - IOg Sj’mﬂf—l)

— a1 [(Pjmt = Pimyi—1) = (Pjrmt = Pirmi—1)] — @al(Rjr — Rj1) — (Rjre — Ryrp1)]

Pimtdjmt

"~ I only observe revenue share in the data wj,; =
Zk Pkmtdkmt

-'-(108; Wimt — log ij,t—1) - (108; Wirmt — log Wj'm,t—1)
= a1[(pjmt = Pimt—1) = Pjrmt — Pjrmi—1)] + a[(Rje — Rji-1) — (Rjre — Rjrp1)]
+ (fjmt - gjm,tfl) - (fj’mt - gj/m,tfl) + <1ngjmt - lngjm,t71>

- (10gpj/mt - lngj/m,tfl)
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t Pjims

.. d —
: ]mt s=1 Pjm,s—1

S Djmt = djmtpjmo

(log Wimt — log ij,tfl) — <10g Wirmt — lOg Wj/m’tfl)
:al[(djmtpjmo - djm,t—lpjmo) - (dj’mtpj’mO - dj’m,t—lpj’mo)]

+ao[(Rjt — Rji1) — (Rjre — Ry p1)] + (§gme — Eima—1) — (Erme — Ejrmae—1)

+ (log pjmt — 10g Pjmt—1) — (108 Pjrme — 10g Pjrms—1)

Set qi; = A1Pjimo, Q1jr = Q1Pjrmo, then

(Sjmt - gjm,t—l) - (gj’mt - gj’m,t—l)
=(logwjmt — log wjm i—1) — (10g Wjrmi —10gWjrm 1—1) — Q1 jm(djme — djmi—1)

+ &1j’m(dj’mt - dj’m,t—l) - (lOg djmt - IOg djm,t—l) + (log dj’mt - log dj’m,t—l)
— ao[(Rjr — Rjp—1) — (Rye — Ry 1))

8.6 NIG distribution

Estimated Parameters:

I 0 e B

0.03366712 0.03188561 7.97037129 0.14520772

Notes: This table displays estimated parameters of Normal Inverse Gaussian distribution.

The functional form of the NIG distribution’s PDF, denoted as f(z), is given by:

) 2 —_ )2
f($|:ua a7575) - @65 a2_52+3(x_“) X Kl (a 5 + (l’ Nl) )
s

02+ (v — p)?
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where:
e 1 € R is the location parameter.

e 0 > 0 is the scale parameter.

a > || > 0 determine the shape of the distribution.

e K;i(+) is the modified Bessel function of the second kind of order 1.

8.7 Hurdle Log-normal Distribution

Estimated Parameters for Hurdle Log-Normal Model

Variable p zero (py) meanlog (1) sdlog (o)
loss rate in less risky market  0.60429283 -0.6111959 1.01192423
loss rate in risky market 0.43826365 -0.5693463 1.05375027

Notes: This table displays estimated parameters of Hurdle Log-normal distribution.

The model handles a significant number of zero values (a “hurdle”) and models the
positive values using a log-normal distribution. The probability function f(z) is defined as

a piecewise function:

Po ifz=0
f(z;po, p,0) = )
(1—po) - Flzﬂ exp (—7(1]“(92”37;“) ) ifz >0

Where:
e pp is the probability of observing a zero value.

o The second part is the scaled PDF of the log-normal distribution for positive values.
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8.8 Payment Function of Reinsurance

We want to approximate:

min{p"® I max{0, Z(ijq(pm, R)) —d}}

The softmin and softmax functions tell us
» max(0,B —d): log(1 + exp(B —d))
« min(4,C): —; log(exp(—Ak) + exp(—Ck))

Then min{p"Q}*, max{0, 3=,,(Ljmq(Pm, R)) — d}} becomes

— 1 08(exp(—p*Q}K) + exp(~(108(1 + exD(X Lyt (P R)) — c)))F)

m
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